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ABSTRACT

Recent measurements have shown that the quiet unstructured solar corona

observed at the solar limb is close to isothermal, at a temperature that does

not appear to change over wide areas or with time. Some individual active loop

structures have also been found to be nearly isothermal both along their axis and

across their cross-section. Even a complex active region observed at the solar limb

has been found to be composed of three distinct isothermal plasmas. If confirmed,

these results would pose formidable challenges to the current theoretical under-

standing of the thermal structure and heating of the solar corona. For example,

no current theoretical model can explain the excess densities and lifetimes of

many observed loops if the loops are in fact isothermal. All of these measure-

ments are based on the so-called emission measure (EM) diagnostic technique

that is applied to a set of optically thin lines under the assumption of isother-

mal plasma. It provides simultaneous measurement of both the temperature and

EM. In this work, we develop a new method to quantify the uncertainties in the

technique and to rigorously assess its ability to discriminate between isothermal

and multithermal plasmas. We define a formal measure of the uncertainty in the

EM diagnostic technique that can easily be applied to real data. We here apply

it to synthetic data based on a variety of assumed plasma thermal distributions,

and develop a method to quantitatively assess the degree of multithermality of a

plasma.

Subject headings: Sun: corona – Plasma: diagnostic techniques – Sun: UV, EUV,

X-ray radiation
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1. Introduction

In the past 15 years the launch of many space missions devoted to the study of the Sun

such as SOHO, TRACE and Hinode has renewed the interest in the thermal structure of

the solar corona and of the plasma structures that populate it, by providing observations of

unprecedented quality and resolution. The knowledge of the thermal structure of the upper

solar atmosphere is key to unveiling the physical process(es) that heat the solar coronal

plasmas to one or more million degrees, even at very low heights above the limb.

The narrow-band images and the spectra obtained with SOHO, TRACE and Hinode

have allowed several detailed studies of the thermal structure of solar plasmas at all scales,

from individual plasma loops to the large-scale corona. Many authors, using the CDS and

SUMER spectrometers on board SOHO, have found that the plasma in the unstructured

quiet solar corona is nearly isothermal (Feldman et al. 1999, Warren 1999, Landi et al.

2002). Landi et al. (2006) also found that a large quiet Sun area (0.5 R⊙ × 1.8 R⊙) outside

the west limb was also close to isothermal. Landi & Feldman (2008) have even shown that

the plasma of an active region observed at the solar limb was made of three almost isothermal

components.

More recent measurements with the Hinode/EIS spectrometer have also shown that the

thermal structure of the off-disk quiet corona has an additional, non-negligible tail at higher

temperatures (Warren & Brooks 2009, Brooks et al. 2009). These authors even determined

that the temperature dependence of the thermal distribution of quiet Sun coronal plasmas

is very similar in 45 different datasets taken during a four months period in 2007, even if the

absolute value of the emission measure changes significantly. Such a hot tail is extremely

important for theories of coronal heating based on impulsive release of energy, since these

predict a small but significant amount of hot plasma to be produced (Cargill & Klimchuk

2004, Klimchuk et al. 2008, Patsourakos & Klimchuk 2009). The mere presence of such a

hot tail, as well as its properties, can provide important constraints on the heating of the

quiet, ”background” solar corona.

One of the most widely used diagnostic methods for determining the plasma thermal

structure is the emission measure (EM) technique, sometimes called the EM loci technique.

We discuss the technique in detail below. Briefly, it is an attempt to find a single temperature

and emission measure pair that correctly predicts the intensities of several different spectral

lines. The technique has a big advantage over line ratios in that it uses all the lines in a

given data set simultaneously so that it is easy to identify any line that is blended or has

atomic physics problems. The technique assumes that the observed plasma is isothermal, so

whenever it fails, one may conclude that multithermal conditions exist. A primary goal of

our work is to quantitatively evaluate the uncertainties in the method and thereby better
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assess its diagnostic potential.

A few attempts to provide such an assessment have been made in the recent past.

For example, Cirtain et al. (2007) tried to establish a criterion for discriminating between

isothermal and multithermal plasma, by establishing a grid of EM bins and determining the

percentage of lines that, for a given temperature, provided an EM value in the same bin.

If 60% or more of the available lines provided EM values in the same bin, the plasma was

considered isothermal. Warren et al. (2008), instead, used a Levenberg-Marquardt algorithm

to determine the best fit parameters of two different distributions: an isothermal one and a

Gaussian DEM; they found that a Gaussian curve with a narrow width better reproduced

the observed line intensities. Judge (2010) discussed the accuracy of temperature diagnostics

with spectral lines and concluded that isothermal conditions can be determined to no better

than ∆ log T = 0.13 due to uncertain atomic physics. That is, a true delta function in

temperature cannot be distinguished from a thermal distribution of width ∆ log T = 0.13.

He assumed an uncertainty of 20% in the atomic physics parameters, which he suggested is

a lower limit.

Differential emission measure (DEM) analysis is another method that is often applied

to plasmas that are known to be multithermal (see for example the review of Phillips et

al. 2008). It is an inversion method that uses multiple spectral lines to determine how

the plasma is distributed in temperature. However, standard DEM diagnostic techniques

experience difficulties in reproducing the sharp variations of the amount of material as a

function of temperature that is typical of plasmas with narrow temperature distributions.

For example, Feldman & Landi (2008) showed that a different choice of the temperature

resolution in the DEM determination brings in large changes in the resulting curve; they

quote an example where the DEM changes its shape from a 2-peak curve to a 3-peak curve

when the resolution increases. Also, traditional DEM techniques require that a smoothing be

applied to the DEM curves, which diminishes small-scale temperature structures or broadens

near-isothermal solutions into artificially wide DEM curves. Such artifacts are for example

crucially important when trying to determine the thermal structure of magnetic loops in the

solar corona. Many studies (e.g. Schmelz et al. 2009, Tripathi et al. 2009, Noglik et al. 2008,

Landi & Landini 2004 and references therein) have sought to determine whether the cross-

sections of loops are isothermal or multithermal, but results have been contradictory partly

because of the difficulty in isolating such structures from the background, partly because

of the lack of a clear and unambiguous criterion that allows a determination of whether

a plasma is isothermal or not, and quantifies the degree of multithermality. A further

layer of complication is added by the use of narrow band imagers, because of their limited

temperature discrimination and of the fundamental diagnostic limitations in the filter ratio

technique as demonstrated by Martens et al. (2002), Weber et al. (2005), and Patsourakos
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& Klimchuk (2007).

In this work we assess the robustness of the EM diagnostic technique for determining

whether a plasma is isothermal. We also propose an extension of the technique that allows

us to determine the thermal width of more general distributions which is particularly useful

for plasmas with narrow temperature distributions. We discuss quantitative measures for

answering the following questions:

1. Is a given set of spectral line observations consistent with the emitting plasma being

isothermal?

2. If so, what is the maximum thermal width that is allowed by the uncertainties?

3. Must the observed plasma be multithermal?

4. If so, what is the range of possible thermal widths that are allowed by the uncertainties?

Our approach is as follows. We first define a quantitative measure of the uncertainty

in the technique, which can and should be used by other researchers. We then apply the

technique to simulated intensities of spectral lines emitted by ions formed over a wide range

of temperatures, calculated using a variety of ad hoc plasma thermal distributions. By

comparing the simulated measurements with the uncertainty, we arrive at some general

conclusions about the ability of the technique to constrain the plasma distribution, both in

isothermal and multithermal conditions.

The diagnostic technique and the simulated spectra that we will use are introduced

in Section 2, while the results of our exercise are reported in Section 3 and discussed in

Section 4.

2. Method

2.1. Diagnostic technique

The EM formalism was first introduced by Pottasch (1963) and since then it has become

a standard method of analysis. We have implemented it following Landi et al. (2002). The

intensity Ii of an optically thin emission line observed at distance d can be written as

Ii =
1

4πd2

∫

V

Gi(T, Ne)N
2

e dV, (1)
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where Ne is the electron number density, V is the emitting volume along the line of sight,

and Gi(T, Ne) is the contribution function of the emitting line. The subscript refers to a line

in the dataset, not an energy level. If the electron density (Ne) and temperature (Tc) are

constant in the emitting volume along the line of sight, we have

Ii =
Gi(Tc, Ne)

4πd2
EM EM =

∫

V

N2

e dV = N2

e V (2)

where EM is the Emission Measure of the plasma. In this case the Emission Measure can

be directly evaluated as:

EM = 4πd2
Ii

Gi(Tc, Ne)
(3)

Under the assumption of constant Ne and Tc within the emitting region, this quantity is the

same for all the observed lines. The diagnostic method consists of calculating the function

EM(T ) defined as

EMi(T ) = 4πd2
Ii

Gi(T, Ne)
=⇒ EMi(Tc) = EM (4)

as a function of electron temperature, using the observed intensities Ii of each line and a value

of the electron density derived from line intensity ratios. In the case of an isothermal plasma,

when all the EM(T ) curves are displayed in the same plot as a function of temperature,

they should intersect at a common point at (Tc, EM). An example of this technique is

given in Figure 1, where it is applied to simulated spectral line intensities obtained from

the CHIANTI database (Dere et al. 1997, 2009, see next Section) assuming an isothermal

plasma at 106 K.

In reality, of course, the curves never intersect at a single point even if the plasma is

perfectly isothermal. Uncertainties due to photon counting statistics, atomic data problems,

intensity calibration errors, incorrect element abundances, or unidentified blends cause the

curves to shift up and down, so that there is a finite region through which all or most of

the curves pass. The crossing point at the center of this region is identified subjectively and

determines the plasma temperature Tc and EM . The interpretation is complicated, however,

because the curves will also deviate from a single intersection point if the the plasma is not
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actually isothermal, even if the measurements are perfect. The challenge is to determine the

range of possible thermal distributions, perhaps including isothermal, that are compatible

with the observations given the uncertainties.

2.2. Measure of isothermality

To begin to answer these questions, we first define a quantitative measure of the degree

to which EM(T ) curves cluster together. Patsourakos & Klimchuk (2007) did something

very similar in an analysis of TRACE triple filter observations. Following their approach,

we define the quantities

F (T ) =
1

M
Σi,j | log

EMj(T )

EMi(T )
|

Fmin = min[F (T )] (5)

where EMj(T ) and EMi(T ) are the EM curves obtained using the observed intensities of

lines j and i, respectively, and the summation is carried out over the M = N(N − 1)/2

possible line pairs i, j available in a dataset of N lines without repetitions (i.e., a given

pair is used only once, regardless of which line appears in the numerator). If all lines cross

exactly in the same point with temperature Tc, then Fmin = F (Tc) = 0. If the plasma is

multithermal, F (T ) will never be zero at any T .

Uncertainties in the EMj(T ) and EMi(T ) are propagated into F (T ) and cause this

quantity to be uncertain by an amount ∆F . In principle, ∆F is a function of temperature,

but for convenience and since most of the uncertainty sources (see below) are by their own

nature independent of temperature, we take it to be constant. As a result of the finite

uncertainties, Fmin will be larger than zero even for plasmas that are isothermal. In order

to be consistent with isothermal, the observations must fulfill the condition

Fmin ≤ ∆F. (6)

If Fmin exceeds ∆F , then the deviation from zero cannot be due to measurement errors

alone, and there must be a finite spread in the thermal distribution. If Fmin is less than

∆F , then isothermal conditions are a valid possibility, and the temperature interval given

by F (T ) ≤ ∆F defines a range of allowed isothermal temperatures.

There is also the possibility that a multithermal plasma provides a value of Fmin that
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is smaller than ∆F . The data are then unable to distinguish between isothermal and mul-

tithermal conditions. The thermal width of the broadest distribution for which Fmin = ∆F

under the assumption of zero uncertainties can be taken as a measure of the temperature

resolution of the EM technique. Larger experimental uncertainties raise the value of ∆F ,

and thus they decrease the ability of the EM technique to discriminate between genuinely

isothermal plasmas and multithermal plasmas with narrow temperature distributions. Such

effects can be mitigated by increasing the number of lines N used in the analysis and using

lines from ions formed at very different temperature regimes, as shown below.

The value of ∆F is calculated from the uncertainties in the EM(T ) curves. If we

indicate such uncertainties as ∆EM , the maximum possible value of ∆F for an isothermal

plasma at temperature Tc is given by

∆F ≤
1

M
Σi,j| log

EMj(Tc) + ∆EMj

EMi(Tc) − ∆EMi

|

=
1

M
Σi,j| log

1 + ∆j

1 − ∆i

| (7)

where ∆j = ∆EMj/EMj(Tc) is the relative uncertainty of the EMj(T ) curve. Thus, once

∆i are known, the value of ∆F can be calculated even before determining the values of the

EM(T ) themselves.

Since ∆I and ∆G(T ) errors are not correlated, the uncertainty ∆EMi in each individual

measurement is given by

(

∆EMi

EMi

)2

=

(

∆Ii

Ii

)2

+

(

∆Gi

Gi

)2

(8)

The intensity uncertainty ∆I is due to two factors: photon counting statistics and photomet-

ric calibration, both independent of temperature. Since F (T ) is defined as ratios of EMi(T )

curves, the absolute intensity calibration plays no role. This was a primary motivation for

defining F (T ) in this way. Inaccurate relative intensity calibration (i.e., instrumental factors

that affect two spectral lines differently) will introduce a systematic error that is difficult to

assess. Uncertainties in photon counting statistics can be minimized by using bright lines.

The uncertainties ∆G are due to two different main sources: atomic physics calcula-

tions of transition rates and element abundances. If we modify Equation 4 to separate the

elemental abundances A from the rest of the atomic physics,
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EMi(T ) =
Ii

AiGi(T, Ne)
(9)

then

(

∆EMi

EMi

)2

=

(

∆Ii

Ii

)2

+

(

∆Gi

Gi

)2

+

(

∆Ai

Ai

)2

. (10)

∆G/G is typically assumed to be in the 15-30% range and it may depend on temperature if

uncertainties affect ion fractional abundances or collision excitation rate coefficients. ∆A/A

only affects ratios of EM(T ) curves of different elements and is determined largely by the

FIP effect, which can vary between a factor 2 and 4 in different plasmas and is independent

of temperature. However, the relative abundances are much less variable within each FIP

class (low-FIP or high-FIP – Feldman & Laming 2000). If the error in the assumed FIP

effect is sufficiently large (i.e. a factor 1.5 or more, see below), it is easily detectable through

the crossing points in the EM(T ) versus T plots obtained with lines of ions belonging to

different FIP classes. It is then possible to correct the assumed abundances. In order to

check this, we recommend that the EM analysis be carried out on two subsets of lines, each

including all the lines belonging to the same FIP class. From the two EM values so obtained,

any offset between the abundances of the low- and high-FIP elements can be corrected, and

the EM technique can be applied again to the full set of lines. The uncertainties in the

relative elemental abundances, once the FIP effect is taken care of, are therefore relatively

small. With this method it is possible to correct for FIP effect errors larger than a certain

lower limit given by the uncertainties in the EM. This lower limit is determined by the other

sources of uncertainty ∆I and ∆G, and typically is a factor 1.5 (≃ 0.2 in the log).

Estimating the atomic physics uncertainties is extremely difficult, because the uncertain-

ties in the individual radiative and collisional transition rates are not known with precision,

and it is almost impossible to propagate them through the calculation of level populations

and line intensities. A detailed analysis of the effect of errors in the atomic physics param-

eters is difficult to carry out, because we do not know a priori the probability distributions

for the errors. One possible way of estimating how an assumed set of uncertainties in the

atomic rates propagates into line intensities and EM(T ) curves is to carry out extensive

Monte Carlo simulations assuming a variety of reasonable errors for each atomic parameter

in the calculation. However, such an extensive set of calculations is beyond the scope of

the present work and is deferred to a future paper; here we limit ourselves to a generic 30%
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uncertainty to the contribution function of each line at any temperature: this uncertainty

level is fairly typical in the literature.

Assuming that ∆I/I and ∆A/A are both negligible, Equation 7 gives ∆F ≃ 0.27 for

a hypothetical dataset of 15 lines, all with the same 30% level of uncertainty. We caution,

however, that anyone using this equation should determine ∆F based on their own dataset.

In the following section, we consider 13 lines with total uncertainties of 10% and 40%, for

which ∆F ≃ 0.09 and 0.37, respectively.

2.3. Simulated spectra and Monte Carlo simulations

We have applied the EM diagnostic to a set of line intensities calculated using the

CHIANTI database (Dere et al. 1997, 2009). The lines that we have considered are listed

in Table 1 and are formed at a temperature range spanning the transition region (105 K) to

the hot corona (3-4×106 K) typical of active regions in the solar disk. We chose strong lines

routinely observed by SOHO/CDS, since many of the studies of the thermal structure of the

corona were carried out using CDS. The calculations were performed assuming the electron

density Ne = 109 cm−3, and adopting the ion abundances from Mazzotta et al. (1998) and

the coronal element abundances of Feldman et al. (1992).

We wish to determine the range of thermal widths that are consistent with an Fmin

constructed from real observations. This depends on both the detailed shape of the thermal

distribution and the measurement uncertainties. We consider two idealized possibilities for

the distribution shape. First, we use a Gaussian in log T , peaked at log T0 with amplitude

A0 and width σ:

ϕ(log T ) = A0e
−

(log T−log T0)2

σ2 (11)

where ϕ(log T ) is the differential emission measure of a plasma. We have defined the DEM

such that ϕ(log T )d log T is the emission measure contained in logarithmic temperature in-

terval d log T and has units of cm−3. We choose log T0 = 6.0 as the centroid for all of our

distributions. This value is very close to the typical temperature of off-disk quiet Sun plas-

mas. We allow σ to vary and adjust A0 so that the total integrated EM is 1027 cm−3. The

magnitude A0 is unimportant, however, as long as it is large enough to justify our neglect of

line intensity uncertainties. The full width at half maximum (FWHM) of the distribution,

designated ∆ log T , is related to σ by ∆ log T = 1.67σ The values of σ and ∆ log T that we

used are listed in Table 2.
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The second form we consider is that of a step function:

ϕ(log T) =







A0 log T0 −
1

2
∆ ≤ log T ≤ log T0 + 1

2
∆

0 otherwise

Again, we adjust A0 to maintain a constant integrated EM of 1027 cm−3. The range of ∆

values we used is listed in Table 2, while we choose log T0 = 6.0. These two distributions

are chosen to investigate the case of a single, multithermal structure along the line of sight

whose plasma is confined in a limited temperature range around a central value.

Equation 7 gives an approximate upper limit to the error ∆F expected for the observa-

tion of an isothermal plasma. For multithermal plasmas, we estimate ∆F using Monte Carlo

simulations. We start with the EMi that would be obtained from 13 spectral lines with no

errors, and then we perform a large number of simulated observations using ∆EMi/EMi

errors selected randomly from a Gaussian distribution. The distribution has a standard de-

viation of either 10% or 40%, corresponding to two different estimates of the measurement

uncertainties. The spectral lines are assumed to have independent errors. For each simula-

tion trial, we determine Fmin from the F (T ) curves. We do this for 10,000 trials and take

the root mean square (RMS) deviation from the true value of Fmin (obtained with no errors)

as an estimate of the uncertainty ∆F .

By repeating this procedure for many different assumed values of the plasma thermal

width, we generate a curve of thermal width versus Fmin with associated error bars ∆F .

An example is shown in Figure 2 for a Gaussian shaped thermal distribution. Black and

gray curves represent ∆EM errors of 10% and 40%, respectively. In each case the solid

curve is the mean value of Fmin obtained from the Monte Carlo simulations, and the dashed

curves indicate the ±∆F uncertainty. Note that the two solid curves are not the same

and do not pass through the origin, as one might expect if they were the true values of

Fmin. They are not the true values, but rather the mean values. Differences arise because

of the nonsymmetric shape of the Fmin distributions, especially for plasmas that are close to

isothermal.

Plots like Figure 2 are very useful useful when we deal with plasmas that are either

isothermal or are characterized by a narrow thermal distribution. In this case, functional

forms like Gaussian distributions can be reasonable approximations to the real plasma ther-

mal distribution, so that a comparison between the Monte Carlo simulations and the ob-

served Fmin value is a fast and effective way of evaluating the plasma distribution and its

degree of multithermality. We simply examine a vertical line positioned at the appropriate

Fmin in Figure 2. Where it crosses the solid curve is the most likely value of the thermal
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width. The crossing points with the dashed curves indicate the range of acceptable thermal

widths that are consistent with the observations given the assumed uncertainties. In many

cases isothermal conditions will be allowed (when Fmin is small and/or ∆F is large). Then,

the crossing with the the upper dashed curve indicates the temperature resolution of the

isothermal determination.

3. Results

3.1. Gaussian distribution with variable width

The Gaussian DEM widths listed in Table 2 allow us to simulate an increasingly multi-

thermal distribution, as can be seen from the results displayed in Figure 3. The left column

in Figure 3 displays the DEM curves used for each simulated spectrum; the EM(T ) curves

are shown as a function of temperature in the right column. Figure 3 shows that, even with

perfect data, analysis made “by eye” can lead to the conclusion that a plasma is isothermal

even for thermal widths up to ∆ log T ≈ 0.07. The situation is of course more ambiguous in

the presences of measurement errors. This demonstrates why a quantitative error analysis

of the type we advocate here is so important.

Figure 2 was obtained with the same DEM curves of Figure 3. The assumed 10% un-

certainty in ∆EM (black curves) is very optimistic, while the assumed 40% uncertainty (red

curves) is rather conservative. With the larger uncertainty, we find that the thermal width

∆ log T is uncertain by approximately 0.2, depending on the value of Fmin. An isothermal

interpretation is valid up to Fmin = 0.45.

3.2. Step distribution

Figure 4 shows the application of the EM technique to the step-function DEM case. It

shows that a “by eye” estimate indicates that the plasma might be isothermal up to an actual

thermal width ∆ = 0.15. This value can be interpreted as the smallest temperature width for

which “by eye” estimates are able to distinguish an isothermal from a multithermal plasma

when the DEM distribution is a step-function. Below that limit, the DEM of a multithermal

plasma looks consistent with isothermal.

Figure 5 shows the corresponding thermal width versus Fmin plot, again calculated with

10% and 40% uncertainties. The resulting uncertainties in the thermal width are somewhat

larger than in the Gaussian case. An isothermal interpretation is once again valid up to
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about Fmin = 0.5 for 40% uncertainties; however, a thermal width ∆ = 0.33 is equally valid

at this value. The ambiguity decreases for smaller uncertainties as well as for smaller Fmin.

3.3. Importance of the number of lines

The ability of the EM diagnostic technique at determining the thermal structure of a

plasma is crucially determined by the amount and nature of the lines that are used. First,

lines from the same ion have almost the same dependence on the electron temperature, so

the information they convey is essentially the same. Thus, multiple lines from the same ion

in the dataset help understanding whether any of them has any problem, but do not provide

any substantial change to characteristics of the plasma thermal distribution determined using

a single line from that ion.

Second, the difference of the temperature of formation of lines emitted by different ions

is also of great importance. In fact, lines from ions that exist in the same temperature

interval again provide somewhat similar information, and their combined use provides little

benefit to the accuracy of the final results. On the contrary, lines from ions formed at very

different temperature ranges provide the most benefit for the results.

To give an idea of the effect of lines from different ions, we have applied the EM diag-

nostic technique to subsets of the lines listed in Table 1, and compared the resulting ∆ log T

versus Fmin curves for Gaussian thermal distributions. Figure 6 shows the results for: case 1,

which includes all 13 original lines (same as Fig. 2); case 2, where we omit lines formed at the

lowest and highest temperatures; and case 3, where we omit lines formed near log T = 6.0 in

the middle of the temperature range. Omitting lines formed in the middle of the range has

only minimal impact on the diagnostics. However, omitting lines at the ends of the range

and thereby limiting the temperature coverage has a very large impact. ∆F uncertainties are

similar in the three cases, but because the curve for case 2 is much steeper, the uncertainty

in thermal width at a given Fmin is much larger.

The downside of including many lines is that they will likely come from different ele-

ments, and as discussed in Section 2.2, inaccuracies in the adopted abundances may then

complicate the analysis. Further, several ions provide only density sensitive lines, so that

their inclusion introduces the need of measuring the electron density independently, as well

as additional uncertainties due to possible inhomogeneities in the emitting plasmas. In gen-

eral, however, the inclusion of more lines is beneficial to the determination of the thermal

structure of solar plasmas.
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3.4. Implementation

It is very important to note that the relationship between the thermal width of the

DEM distribution and Fmin, as well as the calculation of the F (T ) curve and ∆F themselves,

depend on the lines that are being used. Different sets of lines will provide different F (T )

curves, Fmin and ∆F values. The present work does not set a definitive criterion to be

blindly applied to any dataset, but rather it defines a method. F (T ), Fmin and ∆F need to

be calculated for each data set of spectral lines for which the criteria we defined in this work

will be applied. The recommended way to carry out an EM analysis is therefore to follow

five steps:

1. Calculate an approximate upper limit of ∆F for an isothermal plasma using Equation

7 taking into account all the sources of uncertainty;

2. Calculate the EM(T ) curves for each line, and plot them versus temperature to visually

check if a crossing point can be found;

3. Use the EM(T ) curves to calculate F (T ) and Fmin, and compare Fmin with ∆F to

determine whether the plasma might be isothermal (Fmin ≤ ∆F ) or not;

4. Perform Monte Carlo simulations to obtain expected values of Fmin using DEM distri-

butions with a variety of input thermal widths, and generate a curve of thermal width

verus Fmin, including the error band as described in Section 2.3 (a copy of our IDL

code written for this purpose is available upon request);

5. Compare the measured Fmin with the curve and error band to determine the most

likely thermal width of the observed distribution and the range of possible thermal

widths that are allowed by the uncertainties.

Following these steps, the degree of multithermality of a plasma can be determined taking

into account the uncertainties in the observations and in the atomic data, and the possibility

of the plasma being isothermal can be checked unambiguously.

4. Discussion and Conclusions

In the present work we have investigated the potential of the EM diagnostic technique in

order to provide a quantitative method to assess its ability to 1) indicate whether a plasma is

isothermal or not, and 2) determine the range of widths of the plasma thermal distributions
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compatible with the observations. We have developed a diagnostic technique that allows us

to measure the width of a multithermal distribution from a set of observed line intensities.

We have tested it on simulated spectra, where all the parameters of the calculation were

under control. However, the application of this technique to real solar spectra might face

three problems: 1) availability of spectral lines; 2) uncertainties in measured intensities I

and contribution functions G(T ), and 3) element abundances.

Perhaps the worst problem is the availability of lines emitted by many different ions

formed at widely different temperature ranges. We demonstrated in Section 3.3 that the

diagnostic potential of this technique decreases substantially when the range of temperatures

sampled by the available lines is narrow. For this reason, we 1) strongly recommend that the

EM diagnostic technique be applied to datasets with a large number of lines from many ions

that sample a wide temperature range, and 2) caution against results obtained by applying

the EM technique to datasets consisting of the intensities of only few lines, or of narrow-band

filters.

The other main source of uncertainty in the EM analysis is given by element abundances,

as discussed in Section 2.2. In fact, in order to calculate the EM(T ) and F (T ) curves it is

necessary to adopt a set of element abundances which might not necessarily be the same as

those in the emitting plasma. In this case, the crossing point will be less defined or even

absent even if the plasma is strictly isothermal. This uncertainty can be avoided either by

using lines emitted by ions of the same element, or by a class of elements whose relative

abundances are known with high degree of accuracy and that do not change in different

plasmas, such as elements with First Ionization Potential (FIP) smaller than 10 eV (low-FIP

elements), or larger than 10 eV (high-FIP elements), in the solar corona.

We plan in a future paper to apply the present method to diagnostic results reported in

the literature, in order to test the robustness of the claims of isothermality made in several

works.
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Ion Wvl. (Å) log Tmax

Ov 629.732 5.37

Nevi 558.685 5.61

Nevii 561.728 5.71

Mgvii 367.659 5.80

367.672

Mgviii 315.016 5.90

Mg ix 368.070 5.98

Mgx 624.943 6.05

Sixii 520.666 6.28

Fex 345.735 5.98

Fexi 352.662 6.06

Fexii 364.467 6.14

Fexiii 320.809 6.20

Fexiv 334.180 6.27

Table 1: Lines considered in the present work, together with wavelength and temperature of

maximum ion fractional abundance log Tmax (from Mazzotta et al. 1998).

Gaussian Step function

σ FWHM (∆ log T ) ∆

1 0.032 0.053 1 0.20

2 0.055 0.091 2 0.40

3 0.077 0.13 3 0.60

4 0.1 0.17 4 0.70

5 0.17 0.29 5 0.80

6 0.24 0.41 6 0.90

7 0.32 0.53

8 0.55 0.90

Table 2: Parameters for the DEM distributions. Left: widths σ of the single Gaussian

distribution, and corresponding half maximum widths ∆ log T . Right: Width ∆ of the

step-function DEM.
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Fig. 1.— Example of the EM diagnostic technique applied to line intensities calculated

assuming an isothermal spectrum (see text for details). The dashed lines indicate the range

of T and EM values where all the EM(T ) curves cross.
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Fig. 2.— Thermal width ∆ log T versus Fmin for a Gaussian DEM thermal distribution.
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Fig. 3.— Left column: DEM curves used to calculate line intensities. Right column:

EM(T ) curves obtained from the line intensities calculated using the DEM curves on the

left. Values of σ are (from top to bottom): 0.001, 0.002, 0.01, and 0.1, corresponding to

∆ log T = 0.05, 0.07, 0.17 and 0.53.
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Fig. 4.— Left column: DEM curves used to calculate line intensities. Right column:

EM(T ) curves obtained from the line intensities calculated using the DEM curves on the

left. The ∆ widths of the distributions are 0.05, 0.1, 0.15, and 0.2.
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Fig. 5.— Thermal width ∆ log T versus Fmin for a step function DEM thermal distribution.
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Fig. 6.— Thermal width ∆ log T versus Fmin for a Gaussian DEM thermal distributions.

Case 1: all 13 lines in Table 1. Case 2: 9 lines (Ov, Nevi, Sixii, Fexiv are omitted).

Case 3: 9 lines (Mg ix,x, Fex,xi are omitted).


