<p dir="ltr"><br>
If the sun releases 10^25 erg in 30s in the chromosphere,  as needed by these data, cannot this be just local magnetic heating?  A "chromospheric flare"? </p>
<p dir="ltr">Consider magnetic energy density </p>
<p dir="ltr">E= B^2/ 8pi.</p>
<p dir="ltr">In plage let B be say 300G, then E=3e3.  Then for total energy of 10^25 erg we need  3e21 cm3 and d^3=V gives length  d of 10^7 cm, or 0.1 Mm.  If I use rho= 1e-10 g for mid chromosphere, then the alfven speed v_a is 80 kms and d/v_a is 1.2 sec. Fast.</p>
<p dir="ltr">So I am really puzzled why you appeal to beams at all.  There is certainly nothing in the iris data that I can see could ever be used to give direct evidence for e- beams...  all I can glean from these data is that there is a sudden release of energy under the place where Si IV is formed.</p>
<p dir="ltr">So I am very puzzled...</p>
<p dir="ltr">Philip Judge, Scientist, HAO, NCAR<br>
3037759863 <br>
    </p>
<div class="gmail_quote">On Oct 30, 2014 2:49 PM, "Paola Testa" <<a href="mailto:ptesta@cfa.harvard.edu">ptesta@cfa.harvard.edu</a>> wrote:<br type="attribution"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
  

    
  
  <div bgcolor="#FFFFFF" text="#000000">
    Dear all,<br>
    <br>
    you might be interested in the following paper that has just been
    published on Science:<br>
    "Evidence of non-thermal particles in coronal loops heated
    impulsively by nanoflares"<br>
    It can be downloaded from astro-ph: <a href="http://arxiv.org/abs/1410.6130" target="_blank">http://arxiv.org/abs/1410.6130</a>
    or directly<br>
    from the Science pages:
    <a href="http://www.sciencemag.org/content/346/6207/1255724" target="_blank">http://www.sciencemag.org/content/346/6207/1255724</a><br>
    The abstract is below.<br>
    <br>
    cheers,<br>
    Paola<br>
    <br>
    <br>
    Abstract:<br>
    The physical processes causing energy exchange between the Sun’s hot
    corona and its<br>
    cool lower atmosphere remain poorly understood. The chromosphere and
    transition region<br>
    (TR) form an interface region between the surface and the corona
    that is highly sensitive to<br>
    the coronal heating mechanism. High-resolution observations with the
    Interface Region<br>
    Imaging Spectrograph (IRIS) reveal rapid variability (~20 to 60
    seconds) of intensity and<br>
    velocity on small spatial scales (≲500 kilometers) at the footpoints
    of hot and dynamic<br>
    coronal loops. The observations are consistent with numerical
    simulations of heating by<br>
    beams of nonthermal electrons, which are generated in small
    impulsive (≲30 seconds)<br>
    heating events called “coronal nanoflares.” The accelerated
    electrons deposit a sizable<br>
    fraction of their energy (≲10^25 erg) in the chromosphere and TR.
    Our analysis provides tight<br>
    constraints on the properties of such electron beams and new
    diagnostics for their<br>
    presence in the nonflaring corona.<br>
    
    <br>
  </div>

<br>_______________________________________________<br>
Loops mailing list<br>
<a href="mailto:Loops@solar.physics.montana.edu">Loops@solar.physics.montana.edu</a><br>
<a href="https://mithra.physics.montana.edu/mailman/listinfo/loops" target="_blank">https://mithra.physics.montana.edu/mailman/listinfo/loops</a><br>
<br></blockquote></div>